
Journal of Sound and <ibration (2001) 240(2), 241}262
doi:10.1006/jsvi.2000.3201, available online at http://www.idealibrary.com on
ACCURATE MODELLING OF A FLEXIBLE-LINK PLANAR
MECHANISM BY MEANS OF A LINEARIZED MODEL IN

THE STATE-SPACE FORM FOR DESIGN OF A VIBRATION
CONTROLLER

A. GASPARETTO

DIEGM-Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, ;niversita di ;dine,
via delle Scienze, 208, 1-33100 ;dine, Italy. E-mail: gasparetto@uniud.it

(Received 19 November 1999, and in ,nal form 2 June 2000)

Vibration control of #exible link mechanisms with more than two #exible links is still an
open question, mainly because de"ning a model that is adequate for the designing of
a controller is a rather di$cult task. In this work, an accurate dynamic non-linear model of
a #exible-link planar mechanism is presented. In order to bring the system into a form that is
suitable for the design of a vibration controller, the model is then linearized about an
operating point, so as to achieve a linear model of the system in the standard state}space
form of system theory. The linear model obtained, which is valid for whatever planar
mechanism with any number of #exible link, is then applied to a four-bar planar linkage.
Extensive simulation is carried out, aimed at comparing the system dynamic evolution, both
in the open- and in the closed-loop case, using the non-linear model and the linearized one.
The results prove that the error made by using the linearized system instead of the non-linear
one is small. Therefore, it can be concluded that the model proposed in this work can
constitute an e!ective basis for designing and testing many types of vibration controllers for
#exible planar mechanisms.
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1. INTRODUCTION

Control of vibration in #exible mechanisms is still an open "eld for scienti"c investigation.
Although the "rst investigations were carried out in the early 1970s, the analysis, modelling
and control of #exible mechanisms is still very popular, mainly due to the fact that the robot
manipulators and automatic mechanisms need to be increasingly lighter and to operate at
a higher speed.

Several researchers focused on de"ning accurate models of #exible mechanisms. Some
reviews of the work in this "eld have been provided by Lowen and Jandrasits [1], Erdman
and Sandor [2], Lowen and Chassapis [3] and Book [4]. However, most of the literature
turns out to be focused on single-link #exible mechanisms [5}14] or on multi-body systems
with only one #exible link [15}18]; in more recent times, some works on two-link #exible
planar manipulators are found [19}21]. Among the papers dealing with single-link #exible
mechanisms, Giovagnoni [5, 6] presented a mathematical model for a #exible slewing beam
subjected to overall large rotation. Bhat et al. [7] used the Laplace domain synthesis
technique to perform experiments on the precise point-to-point position control of a #exible
beam. Cetinkunt and Wu [8] developed a predictive adaptive control algorithm for tip
position control of a #exible one arm robot. Kwon and Book [9] solved the inverse
dynamic equation of a single-link #exible manipulator in the time domain, in order to
0022-460X/01/070241#22 $35.00/0 ( 2001 Academic Press
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calculate the feed-forward torque and the trajectory of all state variables that do not excite
structural vibrations for a #exible end-point trajectory. Further work on single-link #exible
mechanisms can be found in references [10}14].

Among the papers dealing with multi-body systems with only one #exible link, Hu and
Ulsoy [15] used a set of non-linear hybrid ordinary-partial di!erential equations and an
algebraic constraint equation to de"ne a dynamic model for controller design of
a constrained rigid}#exible robot arm. Siciliano et al. [16] proposed a separate approach
for the control of the two subsystems, namely the slow (rigid) one and the fast (#exible) one;
an output feedback dynamic compensator is then designed and its optimal gains are
computed. Khorrami and Zheng [17] "rst developed a model based on non-linear partial
di!erential equations to describe the dynamics of a two-link planar manipulator with
a #exible forearm; then, they synthesized a controller with an inner loop for the rigid-body
motion of the manipulator, and an outer loop for the #exible motion. Yigit [18] designed
a PD control for a two-link rigid}#exible manipulator and analyzed its stability.

Among the papers dealing with two-link #exible mechanisms, one can recall the work by
Meressi and Paden [19], who investigated the use of robust gain scheduled H

=
controllers

for endpoint trajectory tracking of a two-link #exible manipulator. Xia and Menq [20]
proposed an elastic-deformation estimator for real-time end-point tracking control of
a #exible two-link manipulator. In a very recent paper, Milford and Asokanthan [21]
determined the eigenfrequencies of a two-link #exible manipulator and showed that the
eigenfrequencies strongly depend on the manipulator con"guration.

As it appears from the above literature review, most of the research in the "eld is focused
on one- or two-link #exible planar manipulators, whereas very little is currently present in
the literature regarding the dynamic model and the vibration control of mechanism with
more than two #exible links, and particularly closed-chain mechanisms. The main problem
in this "eld of research is to de"ne a suitable model of the mechanism, which must be
accurate enough to represent e!ectively the real system, but simple enough to enable one to
use such a model to implement an e!ective vibration control. Models of #exible multi-body
systems were proposed by Nagarajan and Turcic [22, 23], who used a Lagrangian
formulation, and by Meirovitch and Stemple [24], who formulated the dynamics of
a #exible system by means of a set of hybrid (ordinary and partial) di!erential equations of
motion in terms of quasi-co-ordinates. Lieh [25] introduced a method leading to
separated-form formulation of dynamic equations of multi-body systems subject to control.
Yang and Park [26] presented a stability analysis method for a closed-loop #exible
mechanism. One of the few applications of a control of a four-bar mechanism (with a #exible
coupler link) can be found in a very recent paper by Karkoub and Yigit [27].

In this paper an accurate dynamic model of a #exible-link planar mechanism, which
constitutes the basis to develop any compensator for vibration control, is presented. The
mechanism links are modelled by beam elements according to the "nite elements method.
The overall motion of the mechanism is decomposed into the rigid motion of a suitably
de"ned equivalent rigid link mechanism (ERLS) and an overlapped elastic motion,
following the ideas set forward by Turcic and Midha [28}30], Chang and Hamilton [31]
and Giovagnoni [32]. The equations of motion for the #exible mechanism can then be
written by direct application of the virtual work principle. In this way, a system of equations
is obtained which provides the elastic accelerations of the nodes as well as the accelerations
of the free co-ordinates of the mechanism. The corresponding velocities and displacements
can then be computed by integration.

However, such a model is strongly non-linear due to the quadratic relation between the
nodal accelerations and the velocities of the free co-ordinates. In order to get a model of the
system in the standard state-space form of system theory, it is necessary to linearize the
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model about an operating point. The linearization of the non-linear model of any
#exible-link planar mechanism is presented, and then applied to the case of a four-bar
planar linkage. The validity of the linearization has been checked by comparing the output
of the linearized model with the output of the non-linear one. It is shown that the di!erence
between the two results, i.e., the error introduced by the linearization, is small. This proves
the e!ectiveness of the linearization for a rather large interval centered at the operating
point; hence, the linearized model is de"nitely e!ective to represent the system in
a state-space form. This will enable one to implement whatever state-space control (for
instance, an optimal control) of the vibrations of a #exible mechanism.

2. DYNAMIC MODEL OF A FLEXIBLE-LINK MECHANISM

The dynamic model of a #exible-link mechanism used in this work is based on the theory
proposed by Giovagnoni [32] and is summarized here. The accuracy of such a model has
been proved by experimental tests, the results of which are presented in the same paper [32].
Each #exible link of the mechanism is subdivided into "nite elements, and an ERLS is
de"ned so that the elastic displacements with respect to it can be considered. Figure 1 shows
the main entities used in the model.

The following de"nitions are made, with respect to a "xed reference frame MX,>,ZN: u
i
is

the nodal displacement vector for the ith "nite element; r
i
is the nodal position vector for the

ith element of the ERLS; b
i
is the nodal position vector for the ith "nite element, given by the

sum of the nodal elastic displacements and of the ERLS position:

b
i
"r

i
#u

i
, (1)

where v
i
is the elastic displacement vector of a generic point inside the ith element; w

i
is the

position vector of the generic point of the ith element of the ERLS; p
i
is the position vector

of the generic point of the ith "nite element, given by the sum of the position of the point in
the ERLS and of its elastic displacement:

p
i
"w

i
#v

i
. (2)

As stated in the foregoing, all the above vectors are measured in a "xed reference frame
MX,>, ZN. However, for each "nite element a local co-ordinate system Mx

i
, y

i
, z

i
N is de"ned,

which follows the ERLS motion. Thus, a block-diagonal global-to-local transformation
matrix T

i
(q) as well as a local-to-global transformation matrix R

i
(q) are to be de"ned. In
Figure 1. Model of the mechanism.
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this way, equation (2) can be rewritten as

p
i
"w

i
#R

i
(q)N

i
(x

i
, y

i
, z

i
)T

i
(q)u

i
, (3)

where N
i
(x

i
, y

i
, z

i
) is the shape function matrix for the interpolation of the ith "nite element

de"ned in the local frame.
For the virtual displacements which are to be used in the application of the virtual work

principle one can write

dp
i
"dw

i
#dv

i
, (4)

where the "rst term on the right-hand side is expressed by

dw
i
"R

i
(q)N

i
(x

i
, y

i
, z

i
)T

i
(q)dr

i
, (5)

and the second virtual term on the right-hand side of dv
i
in equation ((4)) is obtained by

considering both virtual nodal displacements du
i

and virtual displacements dq of the
generalized co-ordinates. In this way, the expression for the virtual displacements in the
"xed reference frame becomes

dp
i
"R

i
(q)N

i
(x

i
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i
, z

i
)T

i
(q)dr

i
#dR
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i
(q)u

i

#R
i
(q)N
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i
)dT
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i
)T

i
(q)du

i
. (6)

Equation (6) can be simpli"ed if terms of lower order of magnitude are neglected, thus
obtaining the expression
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i
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i
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(x
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i
. (7)

Di!erentiating equation (3) twice yields the expression of the acceleration of a generic point
inside the ith "nite element:

pK
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. (8)

Again, by neglecting terms of lower order of magnitude, one gets a simpli"ed expression
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. (9)

A further insight into the kinematics of the system should now be done. If the kinematic
entities of all the "nite elements are grouped into a unique vector, equation (1) becomes,
after di!erentiation,

db"du#dr. (10)
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The con"guration of the ERLS (as well as its velocity and acceleration) depends uniquely on
the vector q of the free co-ordinates; this can be mathematically expressed as

dr"S (q) dq, r5"S (q)q5 , (11, 12)

rK"S(q)qK#SQ (q, q5 )q5 "S (q)qK#A+
k

q5
k

LS

Lq
k
B q5 , (13)

where S (q) is the matrix of the sensitivity coe$cients for all the nodes. This matrix is an
explicit function of the q vector, and its columns contain the nodal rigid-body velocities
corresponding to unit velocities of the generalized co-ordinates of the ERLS.

Then, by substituting equation (11) into equation (10), and setting the expression in
matrix form, one obtains

db"[I D
D S]C

du
- -
dqD. (14)

The coe$cient matrix of equation (14) is not square; hence, a given con"guration db of
in"nitesimal nodal displacements corresponds to more sets of increments xdu(T0 ) D

D dqTy of the
generalized co-ordinates of the system. The easiest way to eliminate this redundancy is to
force to zero a number of elements of du equal to the number of generalized co-ordinates of
the ERLS. If du is partitioned into its independent part (du

in
) and into its zeroed part (du

0
),

and if S is correspondingly partitioned,the element forced to zero can be eliminated from
equation (14):

db"C
I D

D S
in- - - - - -

0 D
D S

0
D C

du
in- - -

dq D (15)

The square matrix of coe$cients of equation (15) must be non-singular, which implies that
the determinant of S

0
must be di!erent from zero; moreover, a correct ERLS de"nition

requires the generalized co-ordinates of the ERLS to be chosen in a way that no singular
con"guration is encountered during the motion.

Once these kinematic de"nitions have been set, the dynamic equations of motion for the
#exible mechanism can be obtained by applying the principle of virtual work:

d=inertia#d=elastic#d=external"0. (16)

A more explicit de"nition of equation (16) is given by

+
i
Pv

i

PT
i
pK
i
o
i
dv#+

i
Pv

i

deT
i
D

i
e
i
dv"+

i
Pv

i

dpT
i
go

i
dv#(duT#drT ) f ,

hggigj hggigj hgggggigggggj (17)
d=inertia d=elastic !d=external

where D
i
, e

i
and o

i
are, respectively, the stress}strain matrix, the strain vector and the mass

density for the ith element, g is the gravity acceleration vector, and f is the vector of the
concentrated external forces and torques. The total virtual work is split into the integrals
over element volumes v

i
and in the virtual work due to f, du and dr refer to all the nodes of

the model.
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Now, by considering equations (6) and (8), and by introducing the following de"nitions:
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(18}20)
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Equation (17) can be rearranged in the form
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A more detailed explanation is contained in reference [32]. Now, nodal elastic virtual
displacements du and virtual displacements of the ERLS dr are completely independent
with each other. Hence, equation (24) can be subdivided into two equations

duTM (rK#uK )#2duTM
G
u5 #duTKu"duT (fg#f ), (25)

drTM (rK#uK )#2drTM
G
u5 "drT ( fg#f ), (26)

where M is the mass matrix, M
G
"M

G1
#M

G2
the Coriolis matrix, K the sti!ness matrix of

the mechanism, fg is the gravity force vector and f the vector of the external loads applied to
the mechanism.

Equation (25) is a statement that nodal equilibrium: equivalent loads applied to each
node must be in equilibrium. Equation (26) is the statement of overall equilibrium of all
equivalent nodal loads applied to the linkage produce no work for virtual displacement of
the ERLS.

Now, the in"nitesimal displacements of the ERLS can be expressed by means of the
sensitivity coe$cient matrix, as in equation (11), and the du's and the dr's can be eliminated
from equations (25) and (26) respectively. Hence, the following system of di!erential
equations is obtained:

M(rK#uK )#2M
G
u5 #Ku"(fg#f ), (27)

STM(rK#uK )#2STM
G
u5 "ST ( fg#f ). (28)

Practical applications need some damping to be introduced. If simple Rayleigh damping is
introduced, equations (27) and (28) become

M (rK#uK )#2M
G
u5 #aMu5 #bKu5 #Ku"(fg#f ), (29)

STM(rK#uK )#2STM
G
u5 #aSTMu5 "ST (fg#f). (30)
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In order to get an explicit integration scheme, equations (29) and (30) can be rearranged in
matrix form

C
M MS

STM STMSD C
uK

qK D"C
t (u, u5 , q, q5 )

STt (u, u5 , q, q5 )D . (31)

In this way, the values of the accelerations can be computed at each step by solving the
system (20), while the values of velocities and of displacements can be obtained by an
appropriate integration scheme (e.g., the Runge}Kutta algorithm).

3. LINEARIZATION OF THE MODEL

An important step in the study of the dynamics of a #exible mechanism was to bring the
above model into the state-space form. In this way, the methods of system theory could be
applied to the model. According to the theory, the state-space form expressing the temporal
evolution of a generic dynamic system is given by

x5 (t)"f (x (t), v (t)), y (t)"h (x (t), v(t)), (32)

where x is the state vector, v is the input vector, y is the output vector and f and h are the
system functions.

System theory often considers the standard state-space form of a linear, time-invariant
dynamic system, that is expressed by

x5 (t)"Fx (t)#Gv(t), y (t)"Hx(t)#Dv(t), (33)

where the matrices, F, G, H and D are not dependent on time.
In order to bring the system under investigation into the state-space form, equations (29)

and (30) are rewritten in matrix form, yielding

C
M MS

STM STMSD * C
uK

qK D"C
!2M

G
!aM!bK !MSQ !K

ST(!2M
G
!aM) !STMSQ 0 D * C

u5

q5

uD
#C

M I

STM STD * C
g

f D . (34)

Then, taking x"[u5 q5 u q]T as the augmented state vector, and rearranging the matrices,
the system expressing the dynamics of the mechanism can be written as

C
M MS 0 0

STM STMS 0 0

0 0 I 0

0 0 0 I D C
uK

qK

u5

q5 D"C
!2M

G
!aM!bK !MSQ !K 0

ST (!2M
G
!aM) STMS 0 0

I 0 0 0

0 I 0 0D C
u5

q5

u

qD
#C

M I

STM ST

0 0

0 0 D CgfD . (35)
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Equation (35) can be rewritten in a more compact form

A(x(t))x5 (t)"B(x(t))x (t)#C (x(t))v(t), (36)

where it should be noted that the A, B and C matrices do not depend on the input vector v.
System (35) is non-linear, because the SQ matrix contains the values of the velocities q5 of

the free co-ordinates (i.e., SQ "SQ (q, q5 )), which yields a quadratic term q5 2 in the velocities of
the free co-ordinates, as expressed by equation (13). It is now required to linearize the
non-linear system (35) about an equilibrium point x

e
, v

e
, i.e., a point for which, recalling

equation (32), x5
e
"f (x

e
, v

e
)"0.

A linearization procedure will now be applied. For generic vectors x (t), v (t) near the
operating point one can write x (t)"x

e
#Dx (t), v(t)#v

e
#Dx (t). Then, introducing such

expressions into equation ((23)) yields

A(x
e
#Dx(t)) (x5

e
#Dx5 (t))"B(x

e
#Dx (t)) (x

e
#Dx (t))#C(x

e
#Dx(t)) (v

e
#Dv(t)). (37)

Now, one can get the exact expressions for the terms appearing in equation (37).
Considering the ith row on the left-hand side of equation (37), and recalling that x5
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where the higher order term +n
k/1

[+n
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j
] can be neglected.

Now, by applying similar considerations on the right-hand side of equation (37), for the
"rst term one obtains
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where the higher order term +n
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A more detailed expression for the last term of equation (41) can be obtained:
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In the same way, for the second term on the right-hand side of equation (37), one obtains
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where the higher order term + n
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A more detailed expression for the last term of equation (41) can be obtained:
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With respect to the above equations, it should be noted that the &&?'' symbol is meant to
indicate the inner product of the vectors
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respectively (for any i and j ), by the vectors x
e
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e
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Then, by considering all the system rows, for the two sides of equation (37), one obtains:
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TABLE 1

Kinematic and dynamic features of the mechanism under investigation

Link lengths

AB BC CD DA ("xed frame)

0)360 m 0)528 m 0)636 m 0)332 m

Square 6mm]6mm cross-section; linearly distributed mass of the
links"0)272 kgm; #exural sti!ness EJ"20)142N m2 .

Concentrated masses and inertias

Joint A Joint B Joint C Joint D
(inertia) (mass) (mass) (inertia)

3)971]10~4kgm2 0)040 kg 0)040 kg 1)656]10~4kgm2

Figure 2. The four-link #exible mechanism to which the model has been applied.



Figure 3. Location of the nodes and elastic translations and rotation associated with each node.

Figure 4. Response of the linearized system in open-loop conditions and without gravity.
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Upon recalling that, according to the de"nition of the equilibrium point
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the system linearized about an operating point can be written as
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Once the operating point x
e
is set, the computation of the matrices A(x
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straightforward, and the matrices
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can be determined according to their de"nitions, given by equations (40) and (42).
Now the matrices appearing in the above equation are constant; therefore, the system (46)

can be written in a more compact form,

ADx5 (t)"BDx (t)#CDv (t), (47)



Figure 5. Comparison between the non-linear system and the linearized one in open-loop conditions without
gravity: (22), non-linear system; (**), linearized system; (00), error.

Figure 6. Comparison between the non-linear system and the linearized one in open-loop conditions with
gravity. (22), non-linear system; (**), linearized system; (00), error.
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where the matrices A, B and C are constant matrices that are de"ned accordingly. Hence, it
can be stated that the system (36) has been linearized.

4. APPLICATION OF THE MODEL TO A SPECIFIC CASE:
A FLEXIBLE FOUR-LINK PLANAR MECHANISM

The model presented in the previous sections is valid for whatever planar mechanism
with any number of free coordinates: In order to get some simulation results, one particular
mechanism has been chosen, namely a four-bar mechanism with #exible steel links, and the
model has been particularized to this case.

Figure 2 shows the particular mechanism under investigation. The kinematic and
dynamic characteristics of that mechanism are reported in Table 1.



Figure 7. Comparison between the non-linear system and the linearized one in closed-loop conditions without
gravity. Operating point: q"0 rad; Kp"10)0, Ki"0)0, Kd"0)1. (22), non-linear system; (**), linearized
system; (00), error.

Figure 8. Comparison between the non-linear system and the linearized one in closed-loop conditions without
gravity. Operating point: q"0)78 rad; Kp"10)0, Ki"1)0, Kd"0)1. (22), non-linear system; (*), linearized
system; (0), error.
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In order to apply the model described in the previous sections, a certain number of nodes
must be chosen. Eight nodes have been de"ned, namely one at each link extremity and one
at the midpoints of links 2 and 3. The locations of the eight nodes are shown in Figure 3.
Hence, link 1 is modelled as a single beam element, links 2 and 3 are modelled as two beam
elements each.

Thus, the mechanism under investigation has 24 elastic degrees of freedom (two
translations in the X and > directions and a rotation about the Z-axis for each node) and
one degree of freedom (the crank angle) of the associated ERLS (see Figure 3). Of course,
some of the elastic degrees of freedom are &&fake'', because the translations of the two
revolute joints connected to the frame are to be zeroed, and the translations of the nodes
lying at the same revolute joint should be equated. With reference to Figure 3, and letting



Figure 9. Comparison between the non-linear system and the linearized one in closed-loop conditions without
gravity. Operating point: q"0 rad; Kp"10)0, Ki"0)0; Kd"0)1. (22), non-linear system; (**), linearized
system; (00), error.

Figure 10. Comparison between the non-linear system and the linearized one in closed-loop conditions with
gravity. Operating point: q"0)78 rad; Kp"10)0, Ki"1)0, Kd"0)1. (22), non-linear system; (**),
linearized system; (00), error.
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s
x
(i) and s

y
(i) denote the X and> displacements of the ith node, it should be considered that,
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Moreover, as explained in the previous section, the value of the elastic displacement of one
among the remaining elastic degrees of freedom must be imposed, in order to correctly
de"ne the ERLS. In this case, it was chosen to equate to zero the X translation of the point
C: s

x
(5)"s

x
(6)"0.

Once these considerations have been done, the linearized dynamic model presented in the
foregoing, which is valid for any planar mechanism, can be applied to this particular
mechanism.



Figure 11. Horizontal (along the X direction) elastic displacement of the midspan of link 3 (node 7) according to
the non-linear model.

Figure 12. Horizontal (along the X direction) elastic displacement of the midspan of link 3 (node 7) according to
the linearized model.
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5. COMPARISON BETWEEN THE LINEARIZED MODEL AND THE NON-LINEAR ONE

In order to prove the validity of the linearized model, several tests have been carried out,
consisting in simulating the behaviour of the system using the non-linear model and
comparing it with the results obtained by using the linearized model. In this way the range
of validity of the linearization, namely the interval about the operating point for which the
linearization holds, can also be found. Two types of tests have been done, namely, open- and
closed-loop tests, using a classic PID compensator. In both cases the results have been
good, showing that the linearization about an operating point yields a good approximation
of the original non-linear system. This allows to state that the linearized model presented in



Figure 13. Error between the non-linear and the linearized model for the horizontal (along the X direction)
elastic displacement of the midspan of link 3 (node 7).

Figure 14. Vertical (along the> direction) elastic displacement of the midspan of link 3 (node 7) according to the
non-linear model.
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this work is an e!ective tool to be used to design and test any vibration controller for
a planar #exible mechanism.

5.1. OPEN-LOOP TESTS

The tests consisted in evaluating the response of the #exible four-bar planar linkage
described in the previous section to the following torque input: q"0)05Nm, 0(t(0)1 s;
q"!0)05 Nm, 0)1 s(t(0)2 s; q"0, t(0 and '0)2 s.



Figure 15. Vertical (along the> direction) elastic displacement of the midspan of link 3 (node 7) according to the
linearized model.

Figure 16. Error between the non-linear and the linearized model for the vertical (along the > direction) elastic
displacement of the midspan of link 3 (node 7).
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The "rst test with this input was done without including the gravity force in the model
(i.e., considering the mechanism moving in a horizontal plane) and taking q"0 as the
operating point. The results of this test are shown in Figure 4.

In order to verify the validity of the linearization, the same input has been applied to the
non-linear system, and the results have been compared with the previous ones. As shown in
Figure 5, both models have a divergent response, and the correspondence between the two
responses is very good. Further tests have been carried out including the gravity force in the
model: Figure 6 shows the comparison between the response of the linearized system and
that of the non-linear one. The linearization has been done about the con"guration:



Figure 17. Horizontal (along the X direction) elastic displacement of the midspan of link 2 (node 4) according to
the non-linear model.

Figure 18. Horizontal (along the X direction) elastic displacement of the midspan of link 2 (node 4) according to
the linearized model.
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q"0)78 rad. Again, the correspondence between the linearized model and the non-linear
one is very good, and the error keeps very small.

5.2. CLOSED-LOOP TESTS

Further tests have been carried out, with the system inserted in a feedback loop with
a classical PID regulator. A step of the free coordinate with amplitude Dq"0)02 rad has
been input to the closed-loop system. The results of the tests for two di!erent operating



Figure 19. Error between the non-linear and the linearized model for the horizontal (along the X direction)
elastic displacement of the midspan of link 2 (node 4).

Figure 20. Vertical (along the> direction) elastic displacement of the midspan of link 2 (node 4) according to the
non-linear model.
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positions, namely q"0 and 0)78 are presented here. Figures 7 and 8 show the results
without including the gravity force in the model, whereas Figures 9 and 10 show the results
obtained including the gravity force in the model. It can be noted that, in all cases, the
behaviour of the linearized system is in good correspondence with that of the non-linear
one. The error is very small (less than 1%) and its tiny #uctuations are given more by the
fact that the response of the linearized system is slightly in advance with respect to that of
the non-linear one, rather than a real di!erence in the amplitude of the response.

Further tests have been carried out, regarding the nodal elastic displacements generated
by a step of the free co-ordinate of 0)02 rad. Figures 11 and 12 show the X elastic



Figure 21. Vertical (along the> direction) elastic displacement of the midspan of link 2 (node 4) according to the
linearized model.
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displacement of node 7 (at the midspan of link 3), according to the non-linear and to the
linearized model, respectively. Figure 13 shows the corresponding error. Figures 14 and 15
show the > elastic displacement of node 7 (at the midspan of link 3), according to the
non-linear and to the linearized model respectively. Figure 16 shows the corresponding
error. Figures 17 and 18 show the X elastic displacement of node 4 (at the midspan of link 2),
according to the non-linear and to the linearized model respectively. Figure 19 shows the
corresponding error. Figures 20 and 21 show the > elastic displacement of node 4 (at the
midspan of link 2), according to the non-linear and to the linearized model respectively.
Figure 22 shows the corresponding error. It can be noticed that the amplitude of the error
generated by the linearization keeps small, although the elastic nodal displacement is very
little in amplitude and has several high-frequency components.

Furthermore, since for any linearization the "eld of validity of the linearized model is
restricted to a certain interval centered at the operating point for which the linearization is
performed, some tests have been carried out in order to determine the amplitude of the
interval about the operating point for which the linearization yields a good enough
approximation of the non-linear model. The tests have been carried out for the system in
closed-loop conditions and with increasing amplitudes of the step input given to the free
co-ordinate (from Dq"0)1 to 0)6 rad). The results proved that the linearization is e!ective
even for displacements of the free coordinate from the operating point up to 1)2 rad. In this
case, the relative error at the steady state is smaller than 3%.

6. CONCLUSION

An accurate dynamic model of a #exible-link planar mechanism has been presented in
this paper. The overall motion of the mechanism has been decomposed into the rigid
motion of a suitably de"ned ERLS and an overlapped elastic motion. Then, the equations
of motion for the #exible mechanism have been obtained by direct application of the virtual
work principle. This yields the elastic accelerations of the nodes and the accelerations of the
free co-ordinates of the mechanism, while the correspondent velocities and displacements
are obtained by integration.



Figure 22. Error between the non-linear and linearized model for the horizontal (along the > direction) elastic
displacement of the midspan of link 2 (node 4).
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The dynamic model is strongly non-linear due to the quadratic relation between the
nodal accelerations and the velocities of the free coordinates. Thus, it has been linearized
about an operating point in order to get a model of the system in the state-space form.

The linearized model has then been applied to the case of a four-bar planar linkage.
Several simulations have been carried out in order to prove the validity of the linearized
model. The results show that the linearization is e!ective, i.e., the linearized model is a good
representation of the non-linear one for an interval centered at the operating point, being
the error introduced by the linearization very small both in open- and closed-loop systems.

It is believed that the linearized model proposed here can be a good base to implement
and test di!erent types of control for vibrations of #exible mechanisms.
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